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A Toom Rule That Increases the Thickness of Sets 
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Toom's north-east-self voting cellular automaton rule R is known to suppress 
small minorities. A variant, R +, is also known to turn an arbitrary initial 
configuration into a homogeneous one (without changing the ones that were 
homogeneous to start with). Here it is shown that R + always increases a certain 
property of sets called thickness. This result is intended as a step toward a proof 
of the fast convergence toward consensus under R*. The latter is observable 
experimentally, even in the presence of some noise. 
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1. I N T R O D U C T I O N  

1.1. Cellular Au tomata  

Cellular au tomata  are useful as models of some physical and biological 
phenomena  and of comput ing  devices. To define a cellular au tomaton ,  first 
a set S of possible local states is given. In the present paper, this is the two- 
element set {0, 1 }. Then, a set W of sites is given. In the present paper, this 
is the two-dimensional  integer lattice Z 2. A configuration, or global state, x 
over a subset B of  W is a function that  assigns a state x[p]  e S  to each 
element p of B. An evolution x[t ,  p] over a time interval t~ ..... t2 and a 
set B of sites is a function that  assigns a global state x[t,  �9 ] over B to all 
t = tl ..... t2. A neighborhood is a finite set G = {gl ..... g~} of elements of  Z 2. 
A transition rule is a function M :  Sk--+ S. An evolution x[t,  p] is called a 
trajectory of the transit ion rule M if the relation 

x[t  + 1, p] = M(x[t ,  p +  g,],..., x[t ,  p +  gk])  (1.1) 

I Boston University and IBM Almaden Research Center. 

171 

0022-4715/90/0400-0171506.00/0 @ 1990 Plenum Publishing Corporation 



172 G&cs 

holds for all t, p. To obtain a trajectory over the whole space W, we can 
start from an arbitrary initial configuration x [0 , - ]  and apply the local 
transformation (1.1) to get the configurations x[1, .], x[2, .],.... The rule 
(1.1) is analogous to a partial differential equation. 

Most work done with cellular automata is experimental. It seems to 
follow from the nature of the broader subject ("chaos") involving the itera- 
tion of transformations that exact results are difficult to obtain. The reason 
seems to be that a trajectory of an arbitrary transition rule is like an 
arbitrary computation, and most nontrivial problems concerning arbitrary 
computations are undecidable. 

Most of the exact work concerns probabilistic cellular automata, i.e., 
ones in which the value of the transition rule M is a probability distribu- 
tion over S. As a simple example, let us consider a deterministic rule M 
and an initial configuration x[0 , - ] .  We begin to apply the relation (1.1) 
to compute x[t+ 1, p],  but occasionally (these occasions occur, say, 
independently with a low probability p), we will violate the rule and take 
a different value for x[t+ 1, p].  The random process obtained in this way 
can be called, informally, a p-perturbation of the trajectory obtained from 
x [ O ,  �9 3. 

The most thoroughly investigated problem concerning probabilistic 
cellular automata is a problem analogous to the phase transition problem 
of equilibrium systems (like the Ising model of ferromagnetism). Given 
a probabilistic transition rule, the problem corresponding to the phase- 
transition problem of equilibrium systems is whether the evolution erases 
all information concerning the initial configuration. In the case, it is said 
that the system does not have a phase transition. 

The known equilibrium models that exhibit phase transition are not 
known to be stable: if the parameters are slightly perturbed (e.g., an out- 
side magnetic field turned on), the phase transition might disappear. In 
contrast, there are cellular automata exhibiting a stable phase transition. If 
was not a trivial problem to find such cellular automata. Indeed, let us 
look at probabilistic rules obtained by the perturbation of a deterministic 
one. If the rule is the identity, i.e., x[t+ 1, p] =x[t, p], then this rule 
remembers the initial configuration, as long as it is not perturbed. If it is 
perturbed appropriately, then the information in the configuration x[t,. ] 
about x[O, �9 ] converges fast to O. Also, most local majority voting rules 
seem to lose all information fast when perturbed appropriately. 

1.2. T o o m ' s  Rule 

The first rules exhibiting stable phase transition were found by Andrei 
Toom. A general theory of them is given in ref. 3. 
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One of Toom's rules is defined with the neighborhood 

G = {(0, 0), (0, 1), (1, 0)} 

and the transition function M which is the majority function Maj(x, y, z). 
In other words, an evolution x[t, p] is a trajectory of Toom's rule R if for 
all t, p where it is applicable, the following relation holds: 

x[t + 1, p]  = Maj(x[t ,  p] ,  x[t, p + (0, 1)], x[t, p + (1, 0)] 

We will also write 

x [ t+  1, .3 = R ( x [ t ,  . 3 )  

The rule R says that to compute the next value in time of trajectory x at 
some site, we have to compute the majority of the current value at the site 
and its northern and eastern neighbors. 

For  s = 0 ,  1, let h~ be the homogeneous configuration for which 
hs[pl =s for all sites p. The north-east-self voting rule R is known to 
suppress small minorities, even in the presence of noise. If started from a 
homogeneous configuration, then the one-bit information saying whether 
this configuration was ho or hi is preserved. 

There are many variants of the rule R, all of which have the noise- 
suppressing property. One of these was used in ref. 2 to define a simple 
three-dimensional rule that not only can store an infinite amount of infor- 
mation about the initial state, but can also simulate the trajectory of an 
arbitrary one-dimensional deterministic rule, despite perturbation. 

Given the simplicity of the rule R and its two stable configurations, it 
is natural to investigate the effect of repeated applications of R to an 
arbitrary configuration that is close to neither h0 o r  h I. We will identify a 
configuration x with the set of sites a, where x[a] = 1. Therefore we can 
talk about the application of R to a set. 

Let G be the graph over W in which each point is connceted to north, 
south, east, west, northwest, southeast. (The graph is undirected in the 
sense that with each directed edge, it also contains the reverse edge.) A 
subset of W is called connected if it is connected in G. Let S = 0 i  Si be a 
set with connected components Si. The simple Lemma 3.1 proved later in 
this paper says that the rule R does not break up an does not connect the 
components Si. For  the plane W = Z 2, the simple Lemma 2.1 stated later 
says that Toom's rule "shrinks" each of the components, in terms of the 
size measure called span. 

If the space W is the torus Z] ,  then the rule R still shrinks those con- 
nected sets that are isomorphic to subsets of Z 2. These components will be 
called simple. Let us characterize them. The increment of each directed edge 
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((al, bl), (a2, b2)) of G is the vector (a 2 - -a~,  b 2 - h i ) .  The absolute value 
of both coordinates of this vectors is ~< 1. The total increment along a path 
is the sum of the increments, without reduction rood n. A closed path (cycle) 
is simple if its total increment is 0. It is easy to see that a connected subset 
of W is simple if and only if it does not contain a nonsimple cycle. Now 
it is easy to verify the following theorem, proved in ref. 1. 

T h e o r e m  1.1. Let S be a subset of W. The set Ri(S) becomes even- 
tually empty as t ~ oe if and only if all components of S are simple. 

Thus, the minimal sets not erased by the iteration of R are cycles that 
wind at least once around the torus. Toom's rule will not break up such 
cycles. It actually leaves many of them invariant, possibly shifting them. 

1.3. Global S impl i f icat ion 

There is some interest in trying to find a variant to Toom's rule that 
still preserves the stability of the homogeneous states h~ but whose itera- 
tions force every configuration x eventually into some H ( x ) = h o  or hi. 
Since there are only two homogeneous configurations, there will be con- 
figurations x, x '  differing only in one site, where H ( x ) =  h o and H ( x ' ) =  hi. 

The main interest of such rules comes from the insight they give into 
the mechanism of global simplification of an arbitrary configuration 
necessary for such a property. Also of interest is the opportunity to 
investigate the noise sensitivity of the simplification, i.e., the size of the 
attraction domains. 

A possible application of such a rule is in situations where a consensus 
must be forced from an arbitrary configuration. G;ics (1) shows such a 
situation. Consensus problems, or, in a more extravagant terminology, 
Byzantine Generals' problems, are central in the area of computer science 
called distributed computing. 

Consensus in the Absence of Failures. Theorem 1.1 above 
suggests a modification of the rule R with the desired property. Since the 
only configurations not erased by R are those containing nonsimple cycles, 
we should try to force all those cycles to hi. This is achieved by biasing the 
rule R slightly in the direction of l's, while still preserving the shrinking 
property given in Lemma2.1. We obtain such a rule R § as follows. To 
compute the state R+(x)[p] of cell p after applying R + to the configura- 
tion x, apply the rule R twice to x, then take the maximum of the states 
of the neighbors p, p +  (0, - 1 ) ,  p +  ( - 1 ,  0). The theorem below shows 
that R § indeed has the desired limiting consensus property. Of course, 
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such a property is interesting only in connection with the presence of at 
least two stable configurations. 

T h e o r e m  1.2. There is a constant c such that the following holds. 
Let S be an arbitrary subset of W =  Z 2. Then (R+)cn(S)=ho or hi. 

A proof was given in ref. 1. Let us sketch here a more direct proof. It 
uses the following lemma from ref. 1 saying that the rule R + first makes a 
set fat before erasing it. The proof is given, for the sake of completeness, 
in Section 2.2. 

Lemma 1.1. Let S be a connected subset of Z 2 with the property 
that (R+)2i(S)~ ~ .  Then (R + )i(S) has at least i2/2 elements. 

The rule R + still has the property of rule R that it does not break up 
connected components. But, contrary to the rule R, it can join several 
components. The following lemma shows how the number of components 
gets smaller, provided no nonsimple component occurs. (If a nonsimple 
component occurs, then the rule R + blows it up anyway, in ~<n steps, to 
occupy the whole space.) 

L e m m a l . 2 .  Let C c W = Z ~  have p components, and D =  
(R+)2i(C) have q components, all of them simple. If i>>.n(8/p) 1/2, then 
q~<0.75p. 

ProoL Let C1,..., Cp be the components of C and DI,..., Dq the com- 
ponents of D. Then there is a disjoint union {1,..., p} =I~w ... • I  u such 
that 

Let K be the set of those j for which Ij consists of a single element ij. These 
j belong to components Cij that are large enough and survive the 2i 
applications of R § without having to merge with other components. It 
follows from Lemmal .1  that [Kl(i2/2)~n 2, i.e., IKl<<.2(n/i) 2, since 
otherwise the number of elements of the set 

would be greater than the nuumber n 2 of elements of W. Of course, we 
have q - ! K I  <~ p/2. Combining these, we have 

q <<. p/2 + 2(n/i) 2 

With i>~n(8/p) 1/2, we have q~<0.75p. | 

822/59/1-2-12 
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Proof of Theorem 1.2, Let us apply the last lemma repeatedly with 

C k + 1 = ( R  + )2ik ( C  k) 

where Pk is the number of components of Ck, and i k = ~-n(8/pk)~/2-]. We get 
Pk+l ~<0.75pk, hence the number of components decreases to 1 fast. The 
times 2ik form approximately a geometric series in which even the largest 
term, obtained with Pk = 2, is at most 4n. Therefore the sum of this series 
is still ~< cn for an appropriate constant c. | 

Consensus in the  Presence of Failures. The sensitivity of the 
simplification property indicates difficulties if some violations of the rule 
are permitted, especially if these violations are not probabilistic but can be 
malicious. It still follows easily from Theorem 1.2 that R § achieves near 
consensus in O(n 2) steps, even if o(n) of the local transitions during this 
procedure were malicious failures. Indeed, in ~ n  2 steps, there is a time 
interval of size cn with the constant c of Theorem 1.2 without failures. 
During this interval, homogeneity is achieved, and given the stability of the 
rule R § the o(n) failures cannot overturn it. 

Eventually, we would like to show that near consensus is achieved 
under the same conditions already in O(n) steps. This seems true, but 
difficult to prove. If failures are permitted, the monotonicity disappears. 
Components can not only be joined, but also split. The argument of 
Lemma 1.2 can be summarized thus: 

Small components either disappear or join to survive; therefore 
their number decreases fast. Large components become tempo- 
rarily fat; therefore their number becomes small. 

If components can also be split, then it is possible that small components 
join temporarily to survive, then failures split them again, and thus their 
number does not decrease. 

Hope is given by an observation indicating a property that is a 
strengthening of Lemma 1.1. This lemma says that R § makes sets fatter 
before erasing them. The strengthening would say that the sets are made 
not only fat in the sense of containing many points, but also "thick," in the 
sense of becoming harder to split. 

Informally, a set can be called k-thick if, for all i < k, cutting off a 
piece of size 6i from it, we need a cutting set of size approximately i. The 
present paper proves that R § indeed has a thickness-increasing property. 
Thus, if R + joins two large components and has k failure-free steps to 
work on the union, then the union cannot be split into two large com- 
ponents again by fewer than k failures. This application is the informal 
justification of the notion of thickness. 



A Toom Rule That Increases the Thickness of Sets 177 

The proof  of the thickness-increasing property is a lot of drudgery. Its 
claim to attention rests less on any aesthetic appeal than on being one of 
the few examples for the rigorous analysis of an interesting global behavior 
of an important  cellular automaton.  

2. S O M E  G E O M E T R I C A L  D E F I N I T I O N S  

2 .1 .  T i l e s  

Let us call a tile a triangle Q(p) consisting of a point p and its 
northern and eastern neighbors (Fig. 1). Let us call p the center of the tile. 
We write 

e~(p)=p, e2(p)=p+(1, O), e3(p)=p+(O, 1) 
(2.1) 

Q(p) = {el(p), e2(p), e3(p)} 

The "center" of the tile is thus really one of the corners. But it is better to 
view the center as identical with the tile itself. In illustrations, it is better 
to draw the tiles to be rotationally symmetric. The "center" of the tile is 
then the site at its bottom. 

If the set S intersects a tile in at least two points, then we say that it 
holds the tile. The set R(S) contains a point p iff S holds the tile with center 
p. We say that two tiles are neighbors if they intersect, or, equivalently, if 
their centers are neighbors. As mentioned above, it is convenient to think 
of the graph of tiles instead of the centers themselves, identifying the set 
R(S) with the set of those tiles held by the elements of S. Let 

Fig. 1. 

Q(E)= Q) Q(a) 
a t E  

e3 

The graph G and a tile, drawn in the original and in the symmetric fashion. 
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2.2. Triangles 

Let us define the linear functions 

LI(0r fl) = - -~ ,  L2(cr , fl) = - f l ,  L3(~x, fl) = ~ q- fl 

The triangle L(a, b, c) is defined as follows: 

L(a, b, c) = {p: LI(p) <. a, L2(p) ~< b, L3(p) -q< c} 

The deflation of the triangle I =  L(a, b, c) by the amount d is defined as 
follows: 

D(I, d)= L(a-d ,  b -d ,  c - d )  

The span of the above triangle is the length of its base, and is given by 

span(I) = a + b + c 

For a set J of triangles we have 

D ( J ,  d ) =  {D(I, d): I e J }  

s p a n ( J ) =  ~ span(l) 

For a set E of lattice points, let span(E, d) be rain span(J) ,  where the 
minimum is taken over sets J of triangles covering E with their d-deflation, 
i.e., for which E c  0 D ( J ,  d). Here, 

Let 

~) D ( J ,  d ) =  ~ D(/, d) 

deft = 2 

We write 

span(E) = span(E, 0) 

Span(E) = span(E, deft) 

The following lemma is easy to verify. 

L e m m a  2.1. For a connected set E of lattice points, 
span(E, d) > 0. Then 

span(R(E), d) = span(E, d) - 1, " span(Q(E), d) = span(E, d) + 1 

let 
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The number span(E, 1/3) will be called the discrete span of E. Then 
discrete span of a single point is 1. Two points are neighbors in G iff the 
discrete span of their pair is ~< 2, i.e., iff the triangles of size 1 around them 
intersect. The following lemma is easy to verify. 

kemma 2.2. (i) If two triangles I i ,  I2 intersect, then there is a 
triangle I of size span(I1) + span(I2) containing I1 u I2. 

(ii) If two sets A~, A2 have neighboring points and Aj is contained 
in D(Ij, 1/3) for triangles Ij, then there is a triangle I of size span(I~)+ 
span(I2) such that A~ uA2 is contained in D(I, 1/3). 

Proof of Lomrno 1.7. Let S be a connected subset of Z 2 with the 
property that (R+)2i(S) is not empty. We have to give a lower bound on 
the set (R + y(S). 

It is easy to verify the following commutation property of the rules R 
and Q: 

QR(S) c RQ(S) 

It follows that 

(R + )~(S) c Q'R2~(S) 

If (R+)2i(S) is not empty, then span(S, 1 / 3 ) >  2i. It follows from 
Lemma 2.1 that R2i(S) is not empty. The set Qi(R2i(S)) then contains a full 
triangle of span i, which contains (i + 1)(i + 2)/2 elements. II 

3. T H E  M A I N  R E S U L T  

3.1. The  E f fec t  of  T o o m ' s  Rule on C o m p o n e n t s  

Suppose that the set S consists of the connected components $1,...; Sn. 
Connectedness is understood here in the graph G. The next statement 
shows that Toom's rule does not break up or connect components. More 
precisely, it implies that the components of R(S) are the nonempty ones 
among the sets R(Si). This statement will not be used directly, but is useful 
for getting some feeling for the way Toom's rule acts. 

Fac t  3.1. Let S be a subset of W. 

(a) If S is connected then R(S) is connected or empty. 

(b) If E is a connected subset of R(S), then Sc~ Q(E) is connected. 
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Proof. Proof  of (a). Let a and b be two points in R(S). Let a~ be a 
point of S in Q(a), and b~ a point of S in Q(b). These points are connected 
in S by a path. Each edge of the path is contained in exactly one tile held 
by S. We have obtained a path of tiles connecting the tile with center a 
to the tile with center b. The centers of these tiles form a path connecting 
a and b in R(S). 

Proof  of (b). Let a, b be two points in So = S :~ Q(E). We have to find 
a path in So co'nnecting them. Since the set E is connected, it is enough to 
find such a path when a, b are in two neighboring tiles, and then work step 
by step. If the intersection point of the two neighbor tiles is in So, then a, b 
are clearly connected through it. Otherwise, So contains the edge in both 
tiles opposite the intersection. It is easy to see from Fig. 2 that these two 
edges have an edge of G connecting them. | 

3.2. Cuts  and Thickness 

For a subset A of S, let bs(A) be the set of all elements of S \ A  that 
are neighbors of an element of A. 

The triple (C, A1, A2) of disjoint subsets of a connected set S in W is 
called a cut of S with parameters ]C], m if every path in S from A~ to A 2 
passes through an element of C, and 

m = rain Span(A/w C) 
j = l , 2  

If there is no path from A~ to A2, then ( ~ ,  A~, A2) is a cut. The cut is 
called closed if 

(bs(A1) w bs(A2) ) ~ C 

Generally, our constructions will yield a cut (C, A1,A2) that is not 
necessarily closed. It can be made closed by adding to Aj all elements of S 
reachable from Aj on paths without passing through C. This operation 
does not increase the cutting set, but increases the sets Aj. A cut is connec- 
ted if both sets Aj w C for j = 1, 2 are connected. 

a b 

Fig. 2. For the proof of Fact 3.1(b). 
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Let O(S, ~) (the a-thickness of S) denote the smallest number k such 
that S has a (not necessarily connected) cut with parameters k, m with 
m > ~k. If no such k exists, then the c~-thickness is oc. If the c~-thickness of 
a large set S is k, then a set of cardinality < k  cannot cut off from S a 
subset of span >c~k, i.e., the set S does not have large parts connected to 
the main body only on thin bridges. The main result is the following 
theorem, showing that the rule 

R + = Q o R  2 

increases the thickness (Fig. 3). 

Theorem 3.1 (Main Theorem). We have 

O(R+(S), 6)>/O(S, 6 ) +  1 

As an example, let us look at the set on Fig. 3 before and after the 
application of the rule R+. The narrow connection between the two parts 
becomes wider. 

3.3.  A u x i l i a r y  N o t i o n s  of  T h i c k n e s s  

The rule R itself does not increase the thickness of a set. It cannot even 
be said that the thickness is preserved. Though connections between large 
parts of the set do not seem to become narrower, some of these parts may 
become larger, as the example in Fig. 4 shows. In this example, the three 
thin connections holding the central reversed triangle do not become 
thicker, but this reversed triangle becomes bigger. 

Q 

Fig. 3. The rule R + increases thickness. 
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Fig. 4. The rule R may have an adverse effect on thickness. 

To take these adverse effects into account, we need an auxiliary 
notion. Let 3(S, ~, fl) [the (~, fl)-thickness of S]  denote the smallest 
number k such that S has a connected cut with parameters k, m with m > 
~k + ft. Notice that the difference is not only in the extra argument fl, but 
in that it deals only with connected cuts. Its relation to O(S, ~) is shown 
by the following theorem. 

Theorem 3.2. 

o ( s ,  c~) = o(s,  c~, o) 

Before proving this theorem, we need the following lemma. 

L e m m a 3 . 1 .  L e t ( C , A , B )  b e a c l o s e d c u t o f S w i t h I C l < 0 ( S , a ,  fi). 
Let us break A w C into components UI, U2 ..... and B w C similarly into 
components V1, V2,.... Then we have either 

for all i, or 

Span(Ui) ~ c~ [ Ui ~ C I +/~ 

Span(Vj) ~< ct ] Vj c~ C] +f l  

for all j. 

Proof. 
generality, let us assume that 

Span(U1) > ~1 U1 c~ C I +/~ 

Let j be arbitrary. Let C ' =  UlC~ Vj. Then C ' ~ C .  
8 ' =  v j \ c ' .  

Suppose that the first relation does not hold. Without loss of 

(3.1) 

Let A ' =  UI\C', 

The triple (C', A', B') is a connected, closed cut of S. The connected- 
ness follows immediate!y from the definition. To show that it is a closed 
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cut, we have to show bs(A' ) c C'. The relation A' c A  implies b s ( A ' ) c  
A u b s ( A  ) c A  u C, and hence, since A ' w  C' is a component of A u C, we 
have bs(A') c C'. 

It follows from the fact that (C', A', B') is a connected cut and from 
O(S, ~, f i )>  ICI that 

min(Span(Ul), Span(Vj)) ~< ~lC'l + P 

This, together with (3.1), implies 

Span(gj)~oclgjcmCl + j8 | 

Proof of  Theorem 3.2. Let S be a set with O(S, ~, 0) > k. We will 
estimate O(S, c~). Let (C, A, B) be a closed cut of S with ICI =k .  Let us 
break A w C into components U1, U2 ..... and Bw C similarly into com- 
ponents V1, V2 ..... Then, Lemma 3.1 says that we have either 

for all i, or 

Span(Ui) ~< ~ I U~ c~ CI (3.2) 

Span(Vj) ~< cr I Vj c~ Cl 

for all j. Without loss of generality, assume that (3.2) holds. Then we have 

Span(A w C) ~< ~ Span(Ui) ~< cclCt | 
i 

When/~ > 0 then the relation between our notion of thickness defined 
(for technical reasons to become clear later) with connected cuts and the 
notion defined with arbitrary cuts is not as simple as above. The reason can 
be seen from the last summation in the above proof. If we had e t Ui ~ CI +/~ 
instead of cclU i n CI, then the summation would bring in n/~, where n is the 
number of terms. 

3.4.  O u t l i n e  o f  t h e  P r o o f  o f  t h e  M a i n  T h e o r e m  

The following theorem, to be proved later, shows that the original 
Toom rule "almost" preserves thickness. 

T h e o r e m  3.3. If p ~< 3. d e f t -  3, then 

O(R(S), c~, fl + 2) >~ O(S, ~, ~) 

The following theorem, to be proved later, says that the rule Q 
increases thickness. 
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T h e o r e m  3.4. Suppose that fl ~< 3 �9 d e f t -  2. Then, 

O(Q(S), c~, fi + 2 - ~) >~ 3(S, ~, fl) + 1 

Proof  of  Theorem 3. 1. We apply the above theorems to R, R, and 
Q, consecutively, with c~ = 6 throughout, but with fl = 0, 2, 4 in the three 
stages. | 

4. THE EFFECT OF T O O M ' S  RULE ON T H I C K N E S S  

Proof o f  Theorem 3.3. Let U= R(S).  Let (C, A 1, A2) be a connected 
cut of U with P CI < k. Without loss of generality, we can assume that it is 
a closed cut. Our goal is to estimate minj= 1,2 Span(Ajw C). We will find a 
certain cut (C', B1, B2) of S. 

For  each element a of C, we define an element a' in S c~ Q(a), and set 
C ' =  {a': a t  C}. To define a', remember the notation ei from (2.1). Let us 
group the neighbors of a in three connected pairs Pi( i= 1, 2, 3), where 
(Fig. 5) 

Pi(a)= { b # a :  ei(a)E Q(b)} 

The pair Pi(a) consists of the centers of those tiles containing the corner 
e~(a). For each i, the pair Pi may intersect one of the sets Aj. It cannot 
intersect both, since A1 and A2 are separated by C. 

1. Suppose that only one pair, say P~, is intersected by A1, and 
e~(a) ~ S. Then let a' = e~(a). 

Fig. 5. The pairs of tiles with centers in P,(a). 
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. 

3. 

Now let 

Suppose that two pairs are intersected by A 1, and the third one, 
say P~, is not, and e~(a)e S. Then let a ' =  e~(a). 
In all other cases, we choose a' arbitrarily from the set Q(a) ~ S. 

Lemma 4.1. 

Bj= (S~ Q(Aj))\C' 

The triple (C', B~, B2) is a cut. 

Proof. It is enough to prove that if there is a path between some 
elements bj e Bj for j = 1, 2, then this path passes through an element of C'. 
Let bl = u1, ~)2,...,/-)n = b2 be such a path. For  both j =  1, 2, the element bj is 
contained in a tile Q(aj) for some aj~Aj. Let q be the last p such that 
vp~Q(a) for some a in A 1. Let Q(w) be the tile containing the pair 
{vq, Vq+~}. Then w~C, since (C, A~, A2) is a closed cut. It is easy to see 
from the definition above that w' is either vq or vq+l. I 

Let us complete the proof of Theorem 3.3. We replace the cut 
(C', B 1, B2) with the closed cut (C', B~,B2), where Bic/~i .  Let UI,..., U, 
be the components of/1~ u C', and V1, V2,... the components of Bz u C'. It 
follows from Lemma 3.1 that either 

Span(Ui) ~< c~ [ U, c~ C'[ +/3 (4.1) 

for all i, or 

Span(Vi) ~c~] Vjc~ C'I +/~ 

for all j. Let us suppose without loss of generality that (4.1) holds. It 
follows from the definition of C' and B 1 that the tile Q(a) intersects B 1 u C' 
for all a E A i u C. Let 

Wi = {aeAI U C: Q(a) c~ U,r ~25} 

U/= Q(W,) 

Then U~ wi = A1 u C, Ui c U/. It follows from the connectedness of U~ that 
span(U,  def t )=span(I i )  for a triangle I~ such that U~c D(Ii, defl). Then 
the triangle J~ = D(I~, deft - 1) contains U', and the triangle R(J~) contains 
W~. Let Ki=  D(R(J~), -1/3), i.e., the blowup of R(Ji) by 1/3. 

Let us call the sets Wi, Wj neighbors if they either intersect or have 
neighboring elements. It follows from the connectedness of Ui W~ that the 
set { W1, W~,... } is connected under this neighbor relation. We constructed 
K~ in such a way that W,. c D(K,, 1/3). Therefore, if IV,. and Wj are 
neighbors, then Kf and Kj intersect. Let us call two triangles K~, Kj 
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neighbors if they intersect. Then, from the fact that the set { W I ,  W 2 .... } is 
connected under the neighbor relation, it follows that the set {K~, K2 .... } 
is also connected under its neighbor relation. 

According to Lemma 2.2, if triangles I, J intersect, then there is a 
triangle containing their union whose span is ~<span(I)uspan(J). It 
follows that there is a triangle K containing UiK~ such that span(K) 
Zi  span(K~). As we know, span(K~, d) = span(J~) + 3 d -  1 for any non- 
negative d. It follows from (4.1) that 

span(Ki, 1/3) = span(J~) + 1 - 1 = span(I~) - 3(deft - 1) 

~<~IU~ C'[ + f i - 3 . d e f l + 3  

We have therefore 

span(K)~<c~ [U~nC'I + n ( f i - 3 . d e f l + 3 )  
i 

~ ~lC'l + n ( f i - 3 -  deft + 3) 

Finally, 

span(A1 w C, deft) ~< span(K, deft - 1/3) 

<~atC'l + n ( f l - 3  .deft + 3)+  3 . d e f t -  1 

~<~IC[ + f i + 2  

where we used the assumption fl ~< 3 - d e f t - 3  to imply that the coefficient 
of n is not positive; therefore, we can replace n with 1. Ii 

5. T H E  EFFECT OF I N F L A T I O N  ON T H I C K N E S S  

Proof of Theorem 3.4. For a subset E of Q(S), let 

Q-I(E, S ) =  {ae S: Q(a)m E ~ 5~3 } 

Suppose that (C, R1, R2) is a connected cut of Q(S) with ICI <~3(S, ~, 3). 
Without loss of generality, we can assume that it is a closed cut. Our goal 
is to estimate mini_ 1,2 Span(Rs). From the fact that R1, R 2 a r e  separated 
by a cut, it follows that the sets Q I(Rj, S) are disjoint. Let 

Sj = Q-~(R s, S) 

L e m m a  5.1. We have 

R j c Q ( S j ) c R j u C  

for j =  1, 2. 
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Proof. The first relation follows immediately from the definition. For  
the second relation, note that 

Q(Sj)= Rjwbs(Rj) 

which is contained in Rjw C by the closedness of the cut (C, R1, R2). | 

Now we proceed similarly to the proof of Theorem 3.3. However, we 
are trying to make the new cutting set C' smaller than the old one. 

I . e m m a  5.2. Let us use the notation introduced above. There is an 
element x of C and a mapping a ~ a' defined on C\{x)  such that we have 
a ~ Q(a'), and with 

c '=  {a':or sj=sj\c' 

the triple (C', S], S~) is a cut of S. 

The proof of this lemma is left to the next section. 
Now we conclude the proof of Theorem 3.4 analogously to the end of 

the proof of Theorem 3.3. Let (C', S'1, S~) be closed cut such that S) c ~j. 
Let U~, U2 .... be the components of  S] w C', and V~, V2 .... the components 
of S~ w C'. It follows from Lemma 3.1 that either 

Span( U~) <~ ~ L U~r~ C'I +// (5.1) 

for all i, or 

Span(Vj) ~< a I Vj r~ C'L + / /  

for all j. Let us suppose without loss of generality that (5.1) holds. Let 
W~=Q(U~). Let us remember the superfluous element x, and define 
Wo = ix}. It follows from our construction that 

R l W C ~ )  Wi 
i 

It follows from the connectedness of Ui that Span(Ui)= Span(Ui, deft)= 
span(I~) for a triangle I z such that U~J~= D(I i, deft). Then Wi~ Q(J~). 
Let Ki=D(Q(J~), - 1 / 3 )  for i > 0 ,  and D({x}, - 1 / 3 )  for i=0 .  Just as in 
the proof of Theorem 3.3, we can conclude that there is a triangle K 
containing UiK~ such that span(K)~<Z~span(K~). It follows from (5.1) 
that, for i > 0, 

span(K~) = span(Ji) + 1 + 1 = span(I~) - 3 �9 deft + 2 

<~ ~[U~ C't + / / - 3 . d e f t + 2  
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We have therefore 

span(K) ~< ~ ~ I UI~  C'l + n(fi - 3. deft + 2) + span(Ko) 
i 

< ~lC'l + n ( f i - 3 - d e f t  + 2 ) +  1 

Finally, 

span(R1 vo C, deft) ~< span(K, deft - 1/3) 

~< c~ IC'l  + n ( f l - 3  .deft + 2) + 1 + 3 . d e f t -  1 

< ~(ICI- l ) + f i + 2 = ~ l c I  +f l+ 2-c~ 

where we used the assumption fl ~< 3. d e l l -  2 to imply that the coefficient 
of n is not positive; therefore, we can replace n with 1. II 

6. C U T T I N G  THE P R E I M A G E  W I T H  FEWER POINTS 

6.1. Condit ions for  a Cut  in the Preimage 

Proof of Lemma 5.2. In later parts of the proof, we will give an 
algorithm for the definition of the distinct elements az, a2,..., the number s 
with a s = x, and the sets 

C~= {a;: i<~t, i ~ s }  

' -  ' ' have already Let S i -  S,\C,. Let Co = ~ .  Assume that al ..... a, and C' t - - 1  

been defined. First we see that, given al, a2,..., a,, what conditions must be 
satisfied by s and a~ to make (C', S'z, S~) a cut of S. 

The element a, is contained in three tiles Q(be(t)) for i =  1, 2, 3 
(Fig. 6). They are numbered in such a way that 

a,:e,(bi( t ))  

Q(b~) 

Q( ~ )  

Fig. 6. The tiles Q(b,(t)). 
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Let us write B(t) = {bl(t ), bz(t), b 3 ( t )  }. We say that a, is superfluous if one 
of the S~ 1 does not intersect the set B(t). We will choose al ,  a2 .... later in 
such a way that there is a t such that at is superfluous. 

C o n d i t i o n  6.1. The point a,  is the first superfluous element of the 
sequence a 1 , a 2 ,  . . . .  

If at is not superfluous, then there are a b and a j such that 

{b} = B ( t )  ' 

Such a b is called eligible for t. Let E(t) be the set of those (one or two) 
elements of B(t) that are eligible for t. 

C o n d i t i o n  6.2. If a, is not superfluous, then a~eE(t).  

k e r n m a  6.1. If Conditions 6.1 and 6.2 are satisfied, then (C', S'1, S~) 
i s a c u t o f S .  

ProoL Suppose that there is a path ul ..... un going from S'1 to S~ in 
S. Let Up be the first element of the path that is not in S'1. We will prove 
that it is in C'. The point a in the intersection of Q(up_ 1) and Q(up) is the 
neighbor of an element of RI ,  since it is in Q(up 1). If it is an element of 
R 1 itself, then up e S~. Since up ~ S'1, it follows that up ~ C' and we are done. 

Suppose therefore that a q~ RI.  Then a e C, since (C, R~, Rz) is a closed 
cut. Let t be such that a = a , .  Then Up_leSt1 -~. If Up q~C',_~, then 
Up ~ S~- 1, by the definition of $2. Then a, is not superfluous, and by Condi- 
tion 6.2, a~ is either up 1 or Up. | 

6.2. The Ch o ice  of  at and a t +  1 

After Lemma 6.1, what is left from Lemma 5.2 to prove is that the 
sequences at, a; can be chosen satisfying Condition 6.2 in such a way that 
one of the a, is superfluous. 

The construction will contain an appropriately chosen constant 
r = l ,  2, or 3. If 

a,_l  ~ Q(br(t)) (6.1) 

then we say that a forward choice is made at time t. In this case, a t is in 
corner r of the tile containing both a, and a,_l .  We call this tile the 
backward tile (Fig. 7). The value of the linear function Lr is greater on a, 1 
than on a,. Let us call the two other tiles containing a, the forward tiles. 

The set 

F(t)  = B( t )  -1 S ; - ' ) \ { b r }  
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a t •  5 o r w a r d  tiles 

backward t i l e ~  ~ / /  

Fig. 7. Backward and forward tiles, with r = 2. 

is the set of the centers of one or two forward tiles for t. In the case of a 
forward choice, the corner r of one of the forward tiles is chosen for a ,+l .  
Suppose that there is a b in F(t) satisfying 

er(b)~ C\{al,...,a,} (6.2) 

Then, choosing a,+x as such a b would make a strong forward choice. 
If, in addition to (6.1), we also have at+ 1 = er(a~), then we say that a 

strong forward choice is made. 

C o n d i t i o n  6.3. Suppose that there is a b in E(t)c~F(t) satisfying 
(6.2). Then a,+l  is such a b, and with a~=b a strong forward choice is 
made. 

Conditions 6.2 and 6.3 are the only ones restricting the choice of a~ 
and a ,+l  for t >  1. Otherwise, the choice is arbitrary. 

L e m m a  6.2. Suppose that no superfluous a, was found for 
i =  1 ..... t, all earlier choices (if any) were forward, and 

F(t)c~S~-~r for j = l , 2  (6.3) 

Then there is a b in F(t) satisfying (6.2) and therefore a forward choice can 
be made. If there is a b in E(t)c~F(t) satisfying (6.2), then all choices 
beginning with t are strongly forward, until a superfluous node is found. 

Proof. By the assumption (6.3), the elements of F(t) are contained in 
two different sets Sj. It follows from Lemma 5.1 that the two forward tiles 
are contained in different sets Rj vo C. There is an edge between the corners 
r of the two forward tiles. Since C separates Rj, it must contain one of 
these points er(b). Since all our earlier choices were forward, the function 
Lr is strictly decreasing on the sequence a~, a2 ..... a,, er(b). Therefore, it is 
not possible that er(b) is equal to one of the earlier elements of the 
sequence, and hence (6.2) is satisfied. 
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If a b in F(t)c~ E(t) can be found satisfying (6.2), then according to 
Condition 6.3, the strong forward choice a~ = b, a , + ~ =  er(b) is made. From 
a ~ S ' ~ u S ~ ,  it follows that either a t+l  is superfluous or E ( t + l ) =  
F(t + 1 ) =  B(t + 1)\{a~}. In the latter case, the conditions of the present 
lemma are satisfied for t + 1, implying that the next choice is also forward, 
etc. I 

6.3.  T h e  C h o i c e  of  r, a l ,  a t ,  and  a2 

C o n d i t i o n  6.4. (1) If a 1 can be chosen superfluous, then it is 
chosen so. 

(2) If a I cannot be chosen superfluous, but it can be chosen to make 
[E(1)[ >1 ,  then it is chosen so. In this case, r is chosen to make 
E(1) = F(1). 

If the second case of the above condition occurs, then all conditions of 
Lemma 6.2 are satisfied with t = 1. 

C o n d i t i o n  6.5. Suppose that none of the choices of Condition 6.4 
is possible, and r, a l ,  a'l, and a2 can be chosen to either make a 2 super- 
fluous or to satisfy the conditions of Lemma 6.2 with t = 2. Then they are 
chosen so. 

kemma 6.3. The elements r, a~, at ,  and a2 can always be chosen in 
such a way that either Condition 6.4 or Condition 6.5 applies. 

Before giving the proof of this lemma, let us finish, with its help, the 
proof  of Lemma 5.2. The complete algorithm of choosing a,, al, and r is as 
follows. Choose a~ to satisfy Condition 6.4. If the second part  applies, then 
choose r accordingly. If Condition 6.5 applies, then choose r, a'~, and a2 to 
satisfy Conditions 6.2 and 6.5. From now on, choose a;, a,+~ to satisfy 
Conditions 6.2 and 6.3. 

A superfluous a, will always be found. Indeed, if the first part  of Con- 
dition 6.4 applies, then al is superfluous. If the second part applies, then the 
conditions of Lemma 6.2 are satisfied with t = 1. If Condition 6.5 applies, 
then they are satisfied with t = 2. From this time on, strong forward choices 
can be made until a superfluous a, is found. This is unavoidable, since C 
is finite and hence we cannot go on making strong forward choices 
forever. | 

Proof of Lemma 6.3. Suppose that the statement of the lemma does 
not hold. We will arrive at a contradiction. Choose a~ arbitrarily. We have 
IE(1)I = 1. We can choose r to get IF(1)I = 2 ,  E ( 1 ) c F ( 1 ) .  We will show 
that we can then make a forward choice (not strong) for each t and 

822/59/1-2-13 
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Q(b~(t)) Q(ba(t + 1)) 

L&&/ 
Fig. 8. For the proof of Lemma 6.3. The shaded tiles Q(bl(t)) and Q(bl(t + 1)) belong to Sa. 

recreate the condit ions (6.3) indefinitely. This is the desired contradict ion,  
since our  set is finite. 

Assume that  we succeeded until t. By L e m m a  6.2, there is a b in F(t) 
such that  (6.2) holds. If  b e E(t), then with the choice dl = at, 4'1 = b, and 
~ 2 = e r ( b ) ,  Condi t ion6.5  would apply,  and we assumed this is impossible.  
Therefore  b r E( t ). 

Without  loss of  generality, let us assume 

E(t) = {bl(t)} c St1 1, r = 2 

Then  b#bl( t) .  F r o m  beF(t), it follows that  b#bz(t),  hence b=b3(t ). 
Since at i s .not  superfluous, the assumpt ion  E(t)= {bl(t)} implies 

O(t)(sS~ -1= { h i ( l ) }  , O(t)ogt2 -1= {62(1) ,  b 3 ( / ) }  

Let us show bl(t + 1)e  St1 - 1. I t  is easy to check that  the two tiles Q(b~(t)) 
and Q(bl( t+l))  intersect in a=e2(bl(t))=e3(bl(t+l))  (Fig. 8). If  
bl(t + 1) belonged to S~-1, then, by L e m m a  5.1, the tile Q(bl(t + 1)) would 
be conta ined in R2w C, while, for a similar reason, the tile Q(bl(t)) is 
conta ined in R 1 w C. Then  the intersection point  a would have to belong 
to C. But then we could satisfy (6.2) with b = bl(t)e E(t). 

t t - - I  We have b 3 ( t + l ) ~ S  2 1. Indeed, if it belonged to S 1 , then the 
choice ~i 1 = a t + a ,  1~2 = at would again satisfy all condit ions of L e m m a  6.2, 
which we supposed is impossible.  We found that  the ne ighborhood  of a t+ l  
is just  a shift of  the ne ighborhood  of at. The could cont inue indefinitely. | 

7. C O N C L U S I O N  

Let us m a k e  a remark  on the possible extension of the present  work. 
The presence of failures seems to necessitate a more  compl ica ted  not ion of 
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thickness, and it is not clear what the appropriate generalization of the 
main theorem should be in that case. 

A variant of the main theorem can probably be proven where the size 
of the cutting set is measured in terms of its span instead of number of 
elements. If the proof of that variant is significantly simpler, then it should 
replace the present theorem. 

The stability property of the rules analogous to Toom's  rules can also 
be proved for continuous-time systems. In such systems, the transition rule 
is not applied simultaneously at all sites, but each site applies it at random 
times. It seems that the consensus property of slightly biased Toom rules 
holds also for this situation. Though the methods used in the present 
paper seem to depend on synchrony, especially the fact that the inflation 
operation is carried out all at once, it is hoped that the concepts will be 
useful in extensions to these related problems. 
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